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1
SYSTEMS AND METHODS FOR
PREDICTING FAILURES IN POWER
SYSTEMS EQUIPMENT

TECHNICAL FIELD

Embodiments of the disclosure relate generally to data
modeling and, more particularly, to systems and methods for
predicting failures in power systems equipment.

BACKGROUND OF THE DISCLOSURE

Power systems equipment may experience one or more
failures during the course of its operation. Such failures may
escape detection until power systems are inspected. The time
of such inspection, however, may not be the actual time that
the failure occurred, as assumed by existing models. Other
models that may be presumed to be more accurate at predict-
ing failures have escaped verification of their accuracy.
Therefore, it is unknown how well existing models may pre-
dict failures, such as those experienced in power systems
equipment.

BRIEF DESCRIPTION OF THE DISCLOSURE

Some or all of the above needs and/or problems may be
addressed by certain embodiments of the disclosure. Certain
embodiments may include systems and methods for predict-
ing failures in power systems equipment. According to one
embodiment, there is disclosed a system including at least one
memory that stores computer-executable instructions and at
least one processor configured to access the at least one
memory and execute the computer-executable instructions to
receive at least one life-span model associated with power
systems equipment and store the at least one life-span model
in the at least one memory, determine an accuracy of the at
least one life-span model based at least in part on a statistical
analysis, and determine a stability of the at least one life-span
model.

According to another embodiment, there is disclosed a
method for receiving, by an input device of a computing
device, one or more life-span models associated with power
systems equipment and storing the one or more life-span
models in memory. The method may also include determin-
ing, by at least one processor of the computing device, an
accuracy of the one or more life-span models based at least in
part on a statistical analysis, and determining a stability of the
one or more life-span models.

According to a further embodiment, there is disclosed a
method for receiving, from periodic inspection, life-span data
associated with a part of a power system, determining a dis-
tribution model based at least in part on the data, generating
an input file for a statistical analysis, calculating a statistical
parameter based at least in part on the generated input file,
comparing the calculated statistical parameter against the
determined distribution model, and determining an accuracy
of the determined distribution model based at least in part on
the comparison.

Other embodiments, systems, methods, apparatuses,
aspects, and features of the disclosure will become apparent
to those skilled in the art from the following detailed descrip-
tion, the accompanying drawings, and the appended claims.

BRIEF DESCRIPTION OF THE FIGURES

The detailed description is set forth with reference to the
accompanying drawings, which are not necessarily drawn to
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scale. The use of the same reference numbers in different
figures indicates similar or identical items, in accordance with
an embodiment of the disclosure.

FIG. 1 illustrates an example power generation system
according to one embodiment of the disclosure.

FIG. 2 illustrates an example computing environment for
generating a model for predicting failures associated with
power generation systems, according to one embodiment of
the disclosure.

FIG. 3 depicts an example flow diagram for a method
according to one embodiment of the disclosure.

Certain implementations will now be described more fully
below with reference to the accompanying drawings, in
which various implementations and/or aspects are shown.
Various aspects may, however, be implemented in many dif-
ferent forms and should not be construed as limited to the
implementations set forth herein. Like numbers refer to like
elements throughout.

DETAILED DESCRIPTION OF THE
DISCLOSURE

Iustrative embodiments will now be described more fully
hereinafter with reference to the accompanying drawings, in
which some, but not all embodiments of the disclosure are
shown. The disclosure may be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will satisfy applicable legal
requirements.

Iustrative embodiments herein are directed to, among
other things, generating a model to predict failures in power
systems equipment. A failure in power systems equipment
may be deemed to have occurred when the equipment is no
longer operating as intended. One or more models may be
generated to predict such failures. According to certain
embodiments herein, the models may be life-span models,
such as a left-censoring model, a right-censoring model, and
an interval-censoring model, as non-limiting examples. Each
of these models may yield different results based at least in
part on the assumptions that underlie these models. For
example, the left-censoring model may assume that failures
occur at the beginning of operation of power systems equip-
ment, the right-censoring model may assume that a failure
occurs at the time of inspection of power systems equipment
(referred to hereinafter as the theoretical model), and the
interval-censoring model may assume that a failure occurs at
some time between the beginning of operation of a piece of
power systems equipment and the time of inspection.

A Weibull distribution analysis used in combination with a
Monte Carlo simulation may be used to determine an accu-
racy and stability for each of the life-span models, according
to one embodiment. To determine the accuracy, random fail-
ure times (e.g., presumed time of failure of power systems
equipment based on historical failures) and random outage
times (e.g., based on design recommendations for inspecting
power systems equipment) may be generated, and Weibull
distribution parameters may be determined or selected for
generating a distribution of the randomly generated failure
times and outage times. Weibull calculations may be per-
formed for each life-span model’s representation of the fail-
ure and outage data, and the calculated values may be com-
pared to the randomly generated values (e.g., based on the
known historical failures) to determine an accuracy for each
life-span model.

In embodiments in which the interval-censoring model is
determined to be more accurate than other models, a degree of
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accuracy for the interval-censoring model may be deter-
mined. A stability of the interval-censoring model may also
be determined. For example, an interval-censoring model that
has a statistical distribution parameter (e.g., Beta) that varies
by less than a threshold percentage may be considered a stable
model and, therefore, may be used to predict failures in power
systems equipment.

The technical effects of certain embodiments herein may
include, but are not limited to, improved accuracy in predict-
ing failures in power systems equipment, which may facili-
tate proper allocation of power systems resources and more
cost-effective contracts associated with purchasing power
systems equipment.

FIG. 1 depicts an example power generation system 100
according to one embodiment of the disclosure. As shown in
FIG. 1, power generation equipment 102 and a computing
device 110 may be connected to one or more wired and/or
wireless networks 130, including the Internet. In other
embodiments, other networks, intranets, or combinations of
networks may be used. Other embodiments may not involve a
network but may, for example, describe devices that are
directly connected to one another, e.g., the computing devices
110 may be directly connected to a piece of power generation
equipment.

The computing device 110 may include simulation soft-
ware 118, such as a Monte Carlo simulation, as a non-limiting
example. In one embodiment, the determination of accuracy
and stability of a life-span model may be based at least in part
on the Monte Carlo simulation. The simulation software 118
may generate and display statistical analysis results 124 on a
display 126 associated with the computing device 110. A
Monte Carlo simulation, as used herein, may refer to a class of
computational algorithms that may rely on repeated random
data points, such as data points associated with power sys-
tems equipment failures, to compute their results. As will be
described in greater detail below, such data may be received
by the computing device 110 over a network 130, and utilized
by the simulation software 118 and various other techniques
including, but not limited to, life-span model analysis and
Weibull distributions to determine an accuracy and stability
of'the life-span models for use in predicting failures in power
systems equipment.

FIG. 2 depicts an example computing environment accord-
ing to one embodiment of the disclosure. The computing
environment 200 may include, but is not limited to, a com-
puting device which may include a processor 204 capable of
communicating with a memory 202. The processor 204 may
be implemented as appropriate in hardware, software, firm-
ware, or combinations thereof. Software or firmware imple-
mentations of the processor 204 may include computer-ex-
ecutable or machine-executable instructions written in any
suitable programming language to perform the various func-
tions described. Examples of computing devices may include
a personal computer, mainframe, web server, mobile device,
or any processor-based device capable of executing instruc-
tions to perform the functions described in the embodiments
herein.

A memory 202 may store program instructions that are
loadable and executable on the processor 204, as well as data
generated during the execution of these programs. Depending
on the configuration and type of computing environment 200,
a memory 202 may be volatile (such as random access
memory (RAM)) and/or non-volatile (such as read-only
memory (ROM), flash memory, etc.). The computer device
may also include additional removable storage 206 and/or
non-removable storage 208 including, but not limited to,
magnetic storage, optical disks, and/or tape storage. The disk
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drives and their associated computer-readable media may
provide non-volatile storage of computer-readable instruc-
tions, data structures, program modules, and other data for the
computing devices. In some implementations, the memory
202 may include multiple different types of memory, such as
static random access memory (SRAM), dynamic random
access memory (DRAM), or ROM.

The memory 202, removable storage 206, and non-remov-
able storage 208 are all examples of computer-readable stor-
age media. For example, computer-readable storage media
may include volatile and non-volatile, removable and non-
removable media implemented in any method or technology
for storage of information such as computer-readable instruc-
tions, data structures, program modules, or other data. Addi-
tional types of computer storage media that may be present
include, but are not limited to, programmable random access
memory (PRAM), SRAM, DRAM, RAM, ROM, electrically
erasable programmable read-only memory (EEPROM), flash
memory or other memory technology, compact disc read-
only memory (CD-ROM), digital versatile discs (DVD) or
other optical storage, magnetic cassettes, magnetic tapes,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by the computer
device. Combinations of any of the above should also be
included within the scope of computer-readable media.

In other embodiments, however, computer-readable com-
munication media may include computer-readable instruc-
tions, program modules, or other data transmitted within a
data signal, such as a carrier wave, or other transmission. As
used herein, however, computer-readable storage media does
not include computer-readable communication media.

The computing environment 200 may also contain one or
more communication connections 210 that allow the com-
puter device to communicate with other devices capable of
communicating with a computing device. The communica-
tion connections 210 may be established via a wired and/or
wireless connection between a computing device and a piece
of power systems equipment, in one embodiment. The con-
nection may involve a network such as the Internet or may be
a direct connection (i.e., excluding a network) between the
computer device and the equipment, according to various
embodiments. The computing environment 200 may also
include one or more input devices 212, such as a keyboard,
mouse, pen, voice input device, and touch input device. It may
also include one or more output devices 214, such as a display,
printer, and speakers.

Turning to the contents of the memory 202 in more detail,
the memory 202 may include an operating system 216 and
one or more application programs or services for implement-
ing the features and aspects described herein, including a
life-span model receiving module 218, an accuracy determi-
nation module 220, and a stability determination module 222.

The life-span model receiving module 218 may receive at
least one life-span model associated with power systems
equipment and store it, e.g., in a memory 202, in one embodi-
ment. Example life-span models may include, but are not
limited to, a left-censoring model, a right-censoring model, a
complete-censoring model, and an interval-censoring model,
or other censoring models that may be applied when the value
of'a measurement or observation, such as a power equipment
failure, is partially known. In one embodiment, left-censoring
may describe a measurement that is below a certain value but
it is unknown by how much, right-censoring may describe a
measurement that is above a certain value but it is unknown by
how much, and interval-censoring may describe a measure-
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ment that is at some point on an interval between two values,
e.g., the left-censoring value and the right-censoring value.

The life-span model receiving module 218 may also
receive information associated with power systems equip-
ment, such as a part or component of a power system, in
certain embodiments. The accuracy determination module
220 may determine an accuracy for each of the received
life-span models based at least in part on the information
associated with the power systems equipment, in one embodi-
ment. In one aspect of the embodiment, the determination
may be based at least in part on a statistical analysis, such as
a Weibull analysis, or another as a continuous probability
distribution. In using a Weibull analysis, the accuracy deter-
mination module 220 may determine Weibull distribution
parameters, such as Beta and Eta. The Beta value may deter-
mine the shape of the distribution and may represent the
failure rate behavior of a life-span model, while the Eta value
may represent a location or characteristic value of a failure.

In one example, the Beta value and the Eta value may be
randomly selected to represent actual failures, to which one or
more simulated failures may be compared, for example, using
a Monte Carlo simulation, to determine the accuracy of a
model based on the actual failures. In one embodiment, a user
may hypothetically select Beta and Eta values to represent
actual failures in the simulation.

As part of the accuracy determination performed by the
accuracy determination module 220, failure times for various
power systems equipment or parts may be generated. The
generated failure times may be based at least in part on his-
torical failures associated with power generation equipment
(which may have been discovered during previous inspec-
tions of power systems equipment), design specifications for
power systems equipment, risk prediction data, and/or other
data that may identity failure rates, patterns, tendencies, etc.,
of power systems equipment. Generated failure times may be
based on one or any combination of these data, which may be
averaged, summed, or calculated using various mathematical
operations and/or techniques to generate a series of data
points representing failures in power systems equipment. In
one embodiment, the historical failures may be based on
failures that may have been discovered during scheduled
maintenance inspections.

The accuracy determination module 220 may also deter-
mine an outage distribution associated with the generated
failures. The outage distribution may indicate a time at which
power systems equipment may be recommended for inspec-
tion by design or manufacturer specifications, or actual his-
torical inspection times for power systems equipment, as
non-limiting examples. Each part or component of a power
system may have a different outage distribution. Recom-
mended inspection times may be provided by a manufacturer
of power systems equipment and may include a duration
which, when reached, may suggest that an inspection of
power systems equipment should be performed. Examples of
such inspection times may include approximately once every
16,000 hours, 24,000 hours, 28,000 hours, etc., as non-limit-
ing examples. In other embodiments, the outage distribution
time may be based on ad-hoc scheduled inspection times,
which may be based on an observation of a degradation of
service or performance associated with power systems equip-
ment, or other determinations.

The accuracy determination module 220 may generate a
series of data points representing outage times along the
determined outage distribution. In one embodiment, a suffi-
cient number of outage times may be generated such that each
of the randomly generated failures may be recognized in the
Weibull analysis. For example, if the generated failure times
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described above are equivalent to approximately 10-, 20-,
30-, and 40-hours, then, to identify the approximate 40-hour
failure time in a Weibull calculation, at least one outage
generation time of greater than or equal to approximately
40-hours may be required, e.g., to represent an inspection
time, or a time at which failures (which likely occurred some
time before inspection) may be discovered. According to
certain embodiments, therefore, both the generated failure
times and the generated outage times may be represented as a
series of points, both of which may serve as inputs into
different censoring models in an accuracy determination for
each of the models.

Upon generating the different censoring models based at
least in part on the generated failure and outage data, the
accuracy determination module 220 may generate a respec-
tive input file that may represent the application of the differ-
ent censoring models to the data. In this way, the life-span
models may be based at least in part on risk prediction data
associated with power systems equipment, in one embodi-
ment. In one aspect of an embodiment, the input file may
include an interval-censoring input file, a left-censoring input
file, aright-censoring input file, and a not-censoring input file.

The accuracy determination module 220 may further per-
form a Weibull analysis to calculate Weibull parameters, e.g.,
Beta and Eta, based at least in part on the generated input files.
The calculated Weibull parameters may be compared against
the determined distribution model, for example, compared to
the actual Weibull parameters as determined randomly by the
accuracy determination module 220 or based on user-speci-
fied parameters. For example, a Beta value and an Eta value
for each of the life-span models may be compared to the
actual Beta values and Eta values to determine an accuracy for
each ofthe life-span models. In other embodiments, the deter-
mination of the accuracy of a life-span model as performed by
the accuracy determination module 220 may include compar-
ing the life-span model, e.g., based on actual Beta and Eta
values, to the theoretical model, which may assume that fail-
ures in power systems equipment occur at the time of inspec-
tion. In this way, determining an accuracy of the determined
distribution model may be based at least in part on the com-
parison between the calculated statistical parameters, e.g., the
Beta and Eta values, and the determined distribution model.

According to certain embodiments, the interval-censoring
model may be more accurate than the left-censoring model
and the right-censoring model, which may be indicated by a
Beta value that is closer to the actual value of a failure than the
Beta value associated with the left-censoring model or the
right-censoring model. In one example, the percentage dif-
ference between the Beta value associated with the interval-
censoring model and the actual Beta value may be less than
one percent, whereas the difference between such values
associated with the left-censoring model and the right-cen-
soring model may be greater than one percent.

The stability determination module 222 may determine
whether a life-span model is stable. According to certain
embodiments, an interval-censoring model, which may be
determined to be more accurate than the left-censoring model
and the right-censoring model, may be analyzed to determine
whether the interval-censoring model is stable. To determine
whether a model is stable, according to one embodiment, the
stability determination module 222 may receive multiple ran-
domly generated failure start times. The stability determina-
tion module 222 may generate the failure start times, or it may
receive such times from a user, according to various embodi-
ments. The failure start times may be different from the fail-
ure times used in the accuracy determination performed by
the accuracy determination module 220. For example, the
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failure start times may not be based on design or manufacturer
specifications but may be based on randomly generated time
intervals that may be sufficient to identify variations in sta-
tistical parameters over time, according to one embodiment.
Example failure start times may include approximately
0-hours, 1-hour, 10-hours, 20-hours, and every additional ten
hours up to the earliest failure (e.g., as identified at the time of
inspection, in one embodiment). Any randomly generated,
user-specified, or other generated values, patterns, etc., may
be used to indicate failure start times in an analysis to deter-
mine the stability of a model, in other examples.

The stability determination module 222 may identify a
Beta value associated with initial parameters, such as failure
start times. In one embodiment, the determination of the
stability of a life-span model may include comparing a Beta
value of a life-span model parameter. For example, in one
embodiment, as the stability determination module 222 varies
the failure start times (e.g., alters them from approximately
0-hours to 1-hour to 10-hours, etc.), the stability determina-
tion module 222 may capture a respective Beta value for each
of the failure start times and analyze at least a portion of the
failure start times to determine whether a model is stable. For
example, in one embodiment, the stability determination
module 222 may analyze the Beta values associated with
initial parameters, such as a number of failure start times (e.g.,
three). If the Beta values associated with the initial param-
eters vary by less than a one percent threshold, in one
example, then a determination may be made that the model is
stable, and a model (e.g., an interval-censored model) may be
recommended. In one example, a model associated with the
first failure time of the initial failure start times (e.g., failure
start time equals one in a subset of initial failure start times
including approximately one, ten, and one-hundred hours)
may represent the best model for predicting failures associ-
ated with power systems equipment. The Beta value associ-
ated with the first failure time may also be used to indicate the
shape of the Weibull distribution, which may also be used to
predict failures in power systems equipment.

According to another example, if the Beta values vary by
more than one percent for a determined number of initial
parameters, but stabilize or converge as the given set of initial
parameters increases, then the model may be considered to be
stable. According to this example, a distribution model with at
least one initial parameter associated with a converged Beta
may be recommended. If the Beta values for the set of initial
parameters are greater than the one-percent threshold and the
Beta values do not converge as the failure start times increase,
then the distribution model may be considered to have a
stability problem, and a model at a higher or lower level of
initial parameters may be determined, or a model associated
with a predetermined Beta value.

The above examples are non-limiting. Fewer or more fail-
ure times, outage times, failure start times, smaller or larger
thresholds used to determine whether a life-span model is
stable, and/or other criteria and/or analysis techniques may be
used to determine accuracy and stability for a life-span model
for use in predicting failures in power systems equipment.

FIG. 3 is an example flow diagram illustrating details of a
method 300 according to an embodiment of the disclosure.
The method 300 is illustrated as a logical flow diagram, in
which each operation represents a sequence of operations that
can be implemented in hardware, software, or a combination
thereof. In the context of software, the operations can repre-
sent computer-executable instructions stored on one or more
computer-readable storage media that, when executed by one
or more processors, perform the recited operations. Gener-
ally, computer-executable instructions may include routines,
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programs, objects, components, data structures, and the like
that perform particular functions or implement particular
abstract data types. The order in which the operations are
described is not intended to be construed as a limitation, and
any number of the described operations can be combined in
any order and/or in parallel to implement the process.

In this particular implementation, the method 300 may
begin at block 302, where life-span information may be
received, e.g., by the life-span model receiving module 218.
Life-span information may include, but is not limited to,
life-span models, such as left-censoring, right-censoring, and
interval censoring, each of which may generate different
results for predicting failures in power systems equipment. At
block 304, a distribution model may be determined. In one
embodiment, the distribution model may be a Weibull distri-
bution, which may include distribution parameters such as
Beta and Eta described above.

One or more failure times may be generated as a series of
data points over time, e.g., by the accuracy determination
module 220, at block 306. As described, such failure times
may be based on information associated with historical fail-
ures that occurred in power systems equipment, in one
embodiment. An outage distribution may be determined, e.g.,
by the accuracy determination module 220, at block 308. As
described, the outage distribution may be based on design or
manufacturer specifications that indicate a recommended
time of inspection for power systems equipment, in one
embodiment. At block 310, outage times may be generated as
a series of data points representing times at which failures
may occur, e.g., based on existing knowledge used to deter-
mine the outage distribution, in one embodiment.

At block 312, an input file for each of the life-span models
received at block 302 may be generated, e.g., by the accuracy
determination module 220. The input files may be used to
calculate statistical parameters, such as those associated with
a Beta value and an Eta value associated with a Weibull
analysis, at block 314. The calculated statistical parameters
for each life-span model may be compared to the statistical
parameters associated with the distribution model determined
at block 304 (e.g., the actual values), at block 316, to deter-
mine an accuracy for each of the life-span models, at block
318. As described, in one embodiment, the interval-censoring
model may be determined to be the most accurate model. The
interval-censoring model may include a Beta value that is
below the determined (e.g., actual) Beta value, while the
left-censoring model and the right-censoring model may
include a Beta value that is above the actual Beta value, in one
example. The interval-censoring model may also include a
Beta value that is less than one percent difference from the
actual Beta value, while the left-censoring model and the
right-censoring model may include respective Beta values
that are greater than one percent difference from the actual
Beta value, in one example.

The stability of a life-span model may also be determined,
e.g., via the stability determination module 222, at block 320.
In one aspect of an embodiment, such a determination may
include determining a stability of the distribution parameter,
which may include determining an approach based at least in
part on a type of failure of a part or component in a power
system. Types of failures may include, but are not limited to,
cracking in blades, walls, platforms, or pipes (as non-limiting
examples), thermal barrier coating spallation, blade tip miss-
ing material, and excessive oxidation of major components.
As described, whether a life-span model is stable may be
determined by analyzing a percentage change in Beta values
for the life-span models each time a failure start time is varied.
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Life-span models that have a Beta value that varies by less
than one percent may be considered stable, according to one
embodiment.

Tlustrative systems and methods for determining an accu-
racy and stability of life-span models are described above.
Some or all of these systems and methods may, but need not,
be implemented at least partially by configurations such as
those described in FIGS. 1 and 2. It should be understood that
certain acts in the methods may be rearranged, modified,
and/or omitted entirely, depending on the circumstances.
Also, any of the acts described above with respect to any
method may be implemented by any number of processors or
other computing devices based on instructions stored on one
or more computer-readable storage media.

That which is claimed:

1. A system, comprising:

at least one memory that stores computer-executable

instructions;

at least one processor configured to access the at least one

memory, wherein the at least one processor is configured

to execute the computer-executable instructions to:

receive at least one life-span model comprising a life-
span model parameter associated with power systems
equipment and store the atleast one life-span model in
the at least one memory, wherein the at least one
life-span model comprises a complete-censored
model, a right-censored model, a left-censored
model, or an interval-censored model;

determine an accuracy of the at least one life-span model
based at least in part on a statistical analysis;

determine a stability of the at least one life-span model,
wherein the determination of the stability comprises
comparing a Beta value of the life-span model param-
eter to one or more actual power systems equipment
failure times;

generate a failure time for the power systems equipment;

determine an outage distribution based at least in part on
at least one of the data or the generated failure time;
and

generate an outage time for the power systems equip-
ment.

2. The system of claim 1, wherein the at least one life-span
model is based at least in part on risk prediction data associ-
ated with the power systems equipment.

3. The system of claim 1, wherein the determination of the
accuracy or the determination of the stability is based at least
in part on a Monte Carlo simulation.

4. The system of claim 1, wherein the statistical analysis
comprises a Weibull statistical analysis.

5. The system of claim 1, wherein the determination of the
accuracy of the at least one life-span model comprises com-
paring the at least one life-span model against a theoretical
model.

6. A method, comprising:

receiving, by an input device of a computing device, one or

more life-span models each comprising a life-span
model parameter associated with power systems equip-
ment and storing the one or more life-span models in
memory, wherein the one or more life-span models com-
prise a complete-censored model, a right-censored
model, a left-censored model, or an interval-censored
model,;

determining, by at least one processor of the computing

device, an accuracy of the one or more life-span models

based at least in part on a statistical analysis;
determining, by the at least one processor of the computing

device, a stability of each of the one or more life-span
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models, wherein determining the stability comprises
comparing a Beta value of the life-span model parameter
to one or more actual power systems equipment failure
times;

generating, by the at least one processor of the computing

device, a failure time for the power systems equipment;
determining, by the at least one processor of the computing
device, an outage distribution based at least in part on at
least one of the data or the generated failure time; and
generating, by the at least one processor of the computing
device, an outage time for the power systems equipment.

7. The method of claim 6, wherein the one or more life-
span models are based at least in part on risk prediction data
associated with the power systems equipment.

8. The method of claim 6, wherein the determining of the
accuracy or the determining of the stability is based at least in
part on a Monte Carlo simulation.

9. The method of claim 6, wherein the statistical analysis
comprises a Weibull statistical analysis.

10. The method of claim 6, wherein determining the accu-
racy of the one or more life-span models comprises compar-
ing the one or more life-span models against a theoretical
model.

11. A method, comprising:

receiving, by at least one computer processor, from peri-

odic inspection, life-span data associated with a part of a
power system,
determining, by the at least one computer processor, a
distribution model based at least in part on the data;

generating, by the at least one computer processor, an input
file for a statistical analysis, wherein the input file com-
prises a complete-censoring input file, an interval-cen-
soring input file, a left-censoring input file, a right-cen-
soring input file, or not-censoring input file;

calculating, by the at least one computer processor, a sta-
tistical parameter based at least in part on the generated
input file;

comparing, by the at least one computer processor, the

calculated statistical parameter against the determined
distribution model;

determining, by the at least one computer processor, an

accuracy of the determined distribution model based at
least in part on the comparison;

determining, by the at least one computer processor, a

stability of the distribution model based at least in part
on a comparison of a Beta value of the calculated statis-
tical parameter to one or more actual power systems
equipment failure times;

generating, by the at least one computer processor, a failure

time for the part of the power system;

determining, by the at least one computer processor, an

outage distribution based at least in part on at least one of
the data or the generated failure time; and

generating, by the at least one computer processor, an

outage time for the part of the power system.

12. The method of claim 11, further comprising determin-
ing, by the at least one computer processor, a stability of the
distribution parameter comprising determining an approach
based at least in part on a type of failure of the part of the
power system.

13. The method of claim 12, wherein determining, by the at
least one computer processor, the stability of the distribution
model further comprises, for a given set of initial parameters,
comparing a first Beta of the distribution model against one or
more additional Betas of the distribution model and, when the
comparison yields a difference less than approximately 1%,
recommending an interval censored model.
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14. The method of claim 12, wherein determining, by the at
least one computer processor, the stability of the distribution
model further comprises, for a given set of initial parameters,
comparing a first Beta ofthe distribution model against one or
more additional Betas of the distribution model, when the
comparison yields a difference greater than approximately
1% and a Beta converges as the given set of initial parameters
increases, recommending the distribution model with at least
one initial parameter associated with a converged Beta, and
when the comparison yields a difference greater than approxi-
mately 1% and a Beta increases as the given set of initial
parameters increases, determining a model with at least one
of'a pre-determined Beta or at a higher or lower level of initial
parameters.
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